专利摘要:
A scalable high power laser system includes a plurality of parallel connected modular power amplifier arms, coupled to a common master oscillator to provide a high average power laser system with a scalable output power level, particularly suitable for laser weapon systems with varying power level output applications. Adaptive optics devices are provided in order to provide pre-compensation of phase front distortions due to the modular amplifier arms as well as encode the wave front of the laser beam with a phase conjugate of atmospheric aberrations.
公开号:US20010002915A1
申请号:US09/758,050
申请日:2001-01-10
公开日:2001-06-07
发明作者:Hiroshi Komine
申请人:TRW Inc;
IPC主号:F41H13-0062
专利说明:
[0001] 1. Field of the Invention [0001]
[0002] The present invention relates to a high average power laser system and more particularly to a modular high average power laser system which includes a phased array of parallel power amplifiers, connected to a common master oscillator for synthesizing composite beams of varying power levels, and adaptive optics which include spatial light modulators for encoding the wave front of the laser beam with a conjugate phase to compensate for atmospheric aberrations. [0002]
[0003] 2. Description of the Prior Art [0003]
[0004] High power laser weapon systems are generally known in the art. An example of such a high power laser system is disclosed in U.S. Pat. No. 5,198,607, assigned to the same assignee as the assignee of the present invention and hereby incorporated by reference. Such laser weapon systems normally include a tracking system for locking the high power laser on a target, such as a ballistic missile, cruise missile, bomber or the like. Such laser weapons are used to destroy or “kill” such targets. The effectiveness of such a laser weapon system depends on many factors including the power of the laser at the target. Many factors are known to affect the power of the laser at the target. One such factor is known as thermal blooming, discussed in detail in U.S. Pat. No. 5,198,607. In order to compensate for thermal blooming, it is known to use multiple high power lasers for killing a single target, for example as disclosed in U.S. patent application Ser. No. 08/729,108, filed on Oct. 11, 1996 for a LASER ALONG BODY TRACKER (SABOT) by Peter M. Livingston, assigned to the same assignee as the assignee of the present invention. [0004]
[0005] Other factors are known to affect the power level of the laser at the target including atmospheric aberrations which cause distortion of the wave front of the high power laser beam. In order to correct the wave front of the laser beam due, for example, to atmospheric aberrations, various adaptive optics systems have been developed. Examples of such systems are disclosed in U.S. Pat. Nos. 4,005,935; 4,145,671; 4,233,571; 4,399,356; 4,500,855; 4,673,257; 4,725,138; 4,734,911; 4,737,621; 4,794,344; 4,812,639; 4,854,677; 4,921,335; 4,996,412; 5,164,578; 5,349,432; 5,396,364; 5,535,049; and 5,629,765, all hereby incorporated by reference. [0005]
[0006] Various laser wave front compensation techniques have been employed. For example, U.S. Pat. Nos. 4,005,935; 4,794,344; and 5,535,049 utilize Brilloin scattering techniques to generate a phase conjugate of the laser wave front in order to compensate for distortions. Other techniques include the use of spatial light modulators which divide the laser beam into a plurality of subapertures, which, in turn, are directed to an array of detectors for detecting the phase front distortion which, in turn is used to compensate the phase fronts as a function of the distortion. Examples of systems utilizing spatial light modulators are disclosed in U.S. Pat. Nos. 4,399,356; 4,854,677; 4,725,138; 4,737,621; and 5,164,578, all hereby incorporated by reference. [0006]
[0007] There are several disadvantages of the systems mentioned above. One disadvantage relates to the fact that such laser systems have a fixed architecture for a given laser power output level. As such, such laser systems are generally not scalable. Unfortunately, various laser applications require different power levels. For example, laser weapon applications require different output power levels depending on the type and distance of the intended targets. In such laser weapon applications, separate laser systems are required for each application which increases the cost of the laser weapon system as well as the number of spare parts required for maintenance. [0007]
[0008] Another disadvantage of such known laser systems with phase front compensation is that such systems are limited to the power level ability of the various components forming the system. For example, such laser weapon systems are known to use lasers, normally high average power chemical lasers which have power levels of a few kilowatts. Due to such high power requirements, spatial light modulators have heretofore been unsuitable for such applications. As such, alternate techniques have been developed providing wave front compensation of such high average power lasers. For example, U.S. Pat. No. 4,321,550 relates to a high average power laser system with phase conjugate correction. In this system, the phase front correction is based on Brilloin scattering. U.S. Pat. No. 3,857,356 discloses another system which utilizes a diffraction grating to provide a reduced power level with test beam. The system disclosed in '636 Patent also includes an interferometer with a phase shifting device disposed in one leg to provide phase front compensation high average power laser systems. [0008]
[0009] Although such systems are suitable for providing phase front compensation of high average power laser systems, such systems are relatively bulky and inefficient. In many applications, there is a desire to use laser weapons that are more efficient and compact, particularly for laser weapon systems. [0009] SUMMARY OF THE INVENTION
[0010] It is an object of the present invention to solve various problems in the prior art. [0010]
[0011] It is yet another object of the present invention to provide a wave front compensation system for compensating phase distortions of a relatively high average power level laser systems. [0011]
[0012] It is yet a further object of the present invention to provide a laser system with phase front compensation which is relatively compact and efficient. [0012]
[0013] It is yet a further object of the present invention to provide a laser power system with wave front compensation which provides a scalable output power level to enable the architecture of laser system to be used in various laser applications of various power levels. [0013]
[0014] Briefly, the present invention relates to a scalable high power laser system which includes a plurality of power amplifiers coupled to a common maser oscillator to provide a laser system with a scalable output power level, particularly suitable for laser weapon systems with varying power level output applications. Adaptive optics are provided in order to compensate for phase front distortions. The adaptive optics is disposed on the input of the power amplifiers to provide pre-compensation of phase front distortions due to the power amplifier modules. The adaptive optics also include a spatial light modulator for encoding the wave front with a conjugate phase for compensating for wave front distortions due to atmospheric aberrations. [0014] DESCRIPTION OF THE DRAWINGS
[0015] These and other objects of the present invention will be readily understood with reference to the following specification and attached drawings wherein: [0015]
[0016] FIG. 1 is a generalized block diagram of a laser system in accordance with the present invention with a scalable power output. [0016]
[0017] FIG. 2 is a block diagram of a portion of the system illustrated in FIG. 1 but with the adaptive optics disposed downstream of the power amplifiers. [0017]
[0018] FIG. 3 is similar to FIG. 2 but shown with the adaptive optics disposed upstream of the power amplifiers. [0018]
[0019] FIG. 4 is a block diagram of a laser system with a scalable power output level which includes phase front compensation for the distortion caused by the power amplifier as well as the atmospheric aberrations in accordance with the present invention. [0019]
[0020] FIG. 5 is a block diagram of an exemplary wave front sensor in accordance with the present invention. [0020] DETAILED DESCRIPTION
[0021] The present invention relates to a relatively high average power laser system with wave front compensation. The system in accordance with the present invention is suitable for use in relatively high average power applications making the system suitable for use with laser weapon systems. An important aspect of the invention is that the system is formed with a scalable architecture which includes a plurality of parallel power amplifier which enable the output power level to be scaled for different power level applications. As mentioned above, various laser applications, such as laser weapon applications require different power output levels depending upon the type as well as the distance of the intended targets. The scalable architecture of the laser system in accordance with the present invention is particularly suitable for laser weapon systems and is also compatible with the power level capability of known spatial light modulators for compensation for wave front distortions of the laser beam resulting from atmospheric aberrations. [0021]
[0022] The modular laser system with a scalable power output level with wave front compensation is illustrated in FIGS. 1 and 4 and generally identified with the reference numeral [0022] 20. As mentioned above, an important aspect of the invention relates to the fact that the modular laser system 20 is able to provide for wave front compensation of a relatively high average power laser system, suitable for use in high energy laser weapon systems. Referring to FIG. 1, the modular laser system 20 includes a plurality of modular amplifier arms 22, 24 and 26, connected a common master oscillator 28 forming a scalable high average power solid state laser system with wave front compensation in accordance with the present invention. The modular laser system 20 enables the power output level to be scaled while taking advantage of adaptive optic devices, as will be discussed in more detail below, which have relatively limited power level capabilities. More particularly, each modular amplifier arm 22, 24 and 26 includes an adaptive optics device 28, 30, 32, a pre-amplifier 34, 36 and 38 as well as a power amplifier 40, 42 and 44, all serially coupled. The power output of the modular laser system is scaled by the number of parallel modular amplifier arms 22, 24 and 26 connected to the master oscillator 28. Although three modular amplifier arms 22, 24 and 26 are shown in FIGS. 1 and 4, additional modular amplifier arms can be added, limited by the power capability of the master oscillator 28.
[0023] As illustrated in FIGS. 2 and 3, the placement of the adaptive optics devices [0023] 28, 30 and 32 in the modular amplifier arms 22, 24, and 26 allows the system to take advantage of known adaptive optics devices which includes spatial light modulators whose power capability is limited to a few kilowatts. FIGS. 2 and 3 illustrate the differences in disposing the adaptive optics modules 28, 30 and 32 downstream and upstream of the power amplifiers 22, 24 and 26. Both systems illustrated in FIGS. 2 and 3 provide wave front compensation. More particularly, referring to FIG. 2 first, in response to a flat input wave front 46, the output wave front 48 is distorted by the amplifier modules 40, 42 and 44. The distorted output wave front 48 from the amplifier modules 40, 42 and 44 is corrected by the adaptive optics devices 28, 30 and 32 to provide a relatively flat output wave front 49. However, disposing the adaptive optics devices 28, 30 and 32 downstream of the power amplifiers 40, 42 and 44 as shown in FIG. 2 results in full power loading on the adaptive optics 28, 30 and 32. Unfortunately, with a topology as illustrated in FIG. 2, the power capabilities of various adaptive optics devices including spatial light modulators are exceeded for relatively high average power laser systems. For example, for a system 20 as illustrated in FIG. 1 with a 12 kilowatt output, each modular amplifier arm 22, 24 and 26 would be subjected to 4 kilowatts which exceeds the power capability of many known spatial light modulators. As discussed above, the power capability of known spatial light modulators is just a few kilowatts. Thus, the topology illustrated in FIG. 2 would be unsuitable for spatial light modulators.
[0024] The topology illustrated in FIG. 3 allows the modular laser system [0024] 20 to take advantage of known spatial light modulators for wave front compensation. In particular, in the embodiment illustrated in FIG. 3, the adaptive optics devices 28, 30 and 32 are disposed upstream of the power amplifiers 40, 42 and 44. With such a topology, in response to a flat input waveform 46, the adaptive optics devices 28, 30 and 32 provide a phase conjugate wave front 50, which, in turn, is applied to the power amplifiers 40, 42 and 44. The output of the power amplifiers 40, 42 and 44 is a flat wave front 52. In the topology illustrated in FIG. 3, using the above example and assuming a 3 kilowatt gain for each power amplifier 40, 42 and 44, the adaptive optics devices 28, 30 and 32 are subject to a power level of only 1 kilowatt, well within the 2 kilowatt range of known spatial light modulators.
[0025] Referring back to FIG. 1, the master oscillator [0025] 28 provides pulses of radiation or light into the modular amplifier arms 22, 24 and 26. The master oscillator 28 may be a conventional laser, such as a gas laser, dye laser or a solid state laser. The master oscillator 28 is coupled to the modular amplifier arms 22, 24 and 26 by way of a plurality of beam splitters 54, 56, 58. The beam splitters 54, 56 and 58 are conventional and are used to direct a portion of the light beams from the master oscillator 28 to each of the modular amplifier arms 22, 24 and 26. For an exemplary 12 kilowatt output laser system as discussed above, the master oscillator 28 is selected to have about 3 kilowatt output power.
[0026] The distributed light pulses from the beam splitters [0026] 54, 56 and 58 are applied to the adaptive optics devices 28, 30 and 32 which, as will be discussed in more detail below, compensate for optical parameter distortions of the wave front distortions of the output laser beam at the target resulting from atmospheric aberrations. The pre-amplifiers 34, 36 and 38 amplify the distributed light beam pulse from the master oscillator 28 which, in turn, is further amplified by the power amplifiers 40, 42 and 44. The power amplifiers 40, 42 and 44 are used to provide coherent output beams which, as will be discussed in more detail below, can be combined by a beam combiner to provide a scalable high average power level output light beam.
[0027] The adaptive optics [0027] 28, 30 and 32 are discussed in more detail below. An exemplary pre-amplifier 34, 36 and 38 may be a low-power (1 KW level) amplifier module consisting of a gain medium, such as Nd:YAG slab, and optical pumping means, such as an array of diode lasers. In the example discussed above, the pre-amplifiers 34, 36 and 38 are selected to have a gain of approximately 20. Each power amplifier 40, 42 and 44 may be selected to consist of three 1 KW module gain sections and provide 3 kilowatts of amplification. Suitable power amplifiers 40, 42 and 44 are diode-pumped high-power Nd:YAG slab lasers.
[0028] An exemplary high average power solid state laser system [0028] 70 is illustrated in FIG. 4. The system 70 illustrated in FIG. 4 includes a master oscillator 72, for example, a solid state laser, which includes its own adaptive optics device 74 for providing a relatively flat output wave front. The adaptive optics device 74 for the master oscillator 72 may be a slow spatial light modulator for compensating for wave front phase distortion resulting from the master oscillator 72. An exemplary master oscillator 72 consists of a Nd:YAG laser with nearly diffraction-limited beam quality. An exemplary adaptive optics device 74 is a liquid-crystal phase modulator array with electronic means to adjust the phase profile. Such a master oscillator and adaptive optics are known in the art.
[0029] The master oscillator [0029] 72 provides a pulsed light beam that is distributed among a plurality of parallel connected modular amplifier arms 76, 78 and 80 by way of a plurality of beam splitters 82, 84 and 86. The distributed pulsed light beams are applied to adaptive optic devices 88, 90 and 92 which, will be discussed in more detail below compensate for optical path distortions resulting from the power amplifiers as well as distortions of the laser wave front due to atmospheric aberrations to provide a coherent light beam with a relatively flat phase front. The outputs of the adaptive output devices 88, 90 and 92 are applied to pre-amplifiers 94, 96 and 98, for amplifying the distributed light pulse on the master oscillator 72. The output of the pre-amplifiers 94, 96 are applied to image relays 100, 102 and 104. The image relays 100, 102 and 104 maintain the near field beam profile from one gain module to the next in order to optimize power extraction and to prevent potential damage due to beam spillage caused by diffraction. Such image relays are known in the art. An aperture placed within each relay 100, 102, and 104 also blocks unwanted light from passing through the gain sections that would otherwise create parasitic oscillations. The outputs of the image relays 100, 102, and 104 are applied to a plurality of power amplifiers 106, 108 and 110 which, as shown, are provided with 3 gain sections 112, 114 and 116. The power amplifiers 106, 108 and 110 provide coherent amplified output beams 112, 114 and 116 which, may be combined by a beam combiner 118 to provide a high average power output beam 120. As discussed above, the power level of the output beam 120 is scalable by the number of modular amplifier arms 76, 78 and 80 included in the system 70.
[0030] The wave front of the output beam [0030] 120 is detected by a wave front sensor 121 which forms a feedback controller in a closed loop with the adaptive optics devices 88, 90 and 92 to provide holographic phase conjugation; encode the wave front with a phase conjugate wave which compensates for distortions of the phase front due to atmospheric aberrations. Each adaptive optic device 88, 90 and 92 may include a slow spatial light modulator 22 and a relatively fast spatial light modulator 124. The slow spatial light modulator 122 provides pre-compensation of relatively slow wave distortions of the light beams due to the power amplifiers 106, 108 and 110. The fast spatial light modulators 124 are serially coupled to the slow spatial light modulators 122 to provide for conjugate wave encoding of the wave front to compensate for distortions due to atmospheric aberrations. Each of the fast spatial light modulators 124 may consist of an array of individually addressable pixels. These pixels under the control of the wave front sensor 122 are modulated as a function of wave front of the output beam 120 to create a conjugate phase front.
[0031] An exemplary wavefront sensor consists of a Mach-Zehnder interferometer in which a small portion of the master oscillator output provides a reference wave to form an interferogram image of the amplifier output beams by sampling a small fraction of the output beam, as illustrated on FIG. 5. The interferogram image converts the phase errors into intensity variations that can be observed and recorded by an electronic photodiode array or CCD camera and an electronic image capture device (e.g., computer with frame-grabber and processing software). The resulting information on the magnitude of the phase error as represented by image brightness at each position of the sampled beam contains the wavefront data. The adaptive optics (AO) controller uses this data to generate the conjugate of the wavefront for each pixel of the AO in each amplifier path. [0031]
[0032] The AO element consists of a slow and fast parts, driven separately by the AO controller. The slow AO may consist of liquid-crystal (LC) spatial light modulator (SLM) that has an array of phase shifters with relatively large dynamic range (several waves) but with slow response (seconds). The fast AO may also be built using a LC-SLM array that is optimized for smaller range (up to one wave) but much faster response (less than millisecond). The slow and fast components of the wavefront data are separated in the processor to drive respective parts of the AO controller. [0032]
[0033] The system [0033] 70 illustrated in FIG. 4 may be used to form a high average power solid state laser with wave front compensation. In addition to being compact and efficient, the high average power level solid state laser provides a scalable power output useful in applications where the power level requirements vary. In order to increase the kill level of solid state lasers used for laser weapons, the system provides adaptive optics for compensating for optical component distortions as well as encoding the phase front with a phase conjugate wave in order to compensate for atmospheric aberrations.
[0034] Obviously, many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described above. [0034]
权利要求:
Claims (11)
[1" id="US-20010002915-A1-CLM-00001] 1. A high average power laser system with a scalable output power lever, the laser system comprising:
a master oscillator for generating pulsed light beams;
one or more modular amplifier arms for providing an output light beam, each modular amplifier arm optically coupled to said master oscillator, and including a power amplifier for amplifying said pulsed light beam distributed from said master oscillator and defining an output light beam;
one or more first adaptive optics devices for encoding the wave front of said output beam with a phase conjugate to compensate for wave front distortions of said output beam due to atmospheric aberrations; and
a beam combiner for combining the output beams from said modular amplifier arms and providing a scalable composite output beam whose power level is a function of the number of modular amplifier arms connected to the system.
[2" id="US-20010002915-A1-CLM-00002] 2. The laser system recited in
claim 1 , further including first adaptive optics devices disposed in one or more of said modular amplifier arms.
[3" id="US-20010002915-A1-CLM-00003] 3. The laser system as recited in
claim 2 , wherein the system is configured such that the output level of said scalable composite output beam exceeds the power capability of each of said modular amplifier arms.
[4" id="US-20010002915-A1-CLM-00004] 4. The laser system as recited in
claim 3 , wherein said first adaptive optics devices include a first spatial light modulator.
[5" id="US-20010002915-A1-CLM-00005] 5. The laser system as recited in
claim 4 , wherein said spatial light modular is a relatively fast spatial light modular for providing holographic phase conjugation.
[6" id="US-20010002915-A1-CLM-00006] 6. The laser system as recited in
claim 5 , further including a second adaptive optics device.
[7" id="US-20010002915-A1-CLM-00007] 7. The laser system as recited in
claim 6 , wherein said second adaptive optics device is serially coupled to said first adaptive optics device.
[8" id="US-20010002915-A1-CLM-00008] 8. The laser system as recited in
claim 7 , wherein said second adaptive optics device includes a second spatial light modular.
[9" id="US-20010002915-A1-CLM-00009] 9. The laser system as recited in
claim 8 , wherein said second spatial light modular is a slow spatial light modular for compensating for wavefront distortions due to said modular amplifier arms.
[10" id="US-20010002915-A1-CLM-00010] 10. The laser system as recited in
claim 1 , wherein said system includes one or more beam splitters for distributing said light pulses from said master oscillator to a plurality of modular amplifier arms.
[11" id="US-20010002915-A1-CLM-00011] 11. The laser system as recited in
claim 1 , wherein each modular amplifier arm includes a preamplifier for amplifying the distributed light wave pulses from said master oscillator.
类似技术:
公开号 | 公开日 | 专利标题
US6404784B2|2002-06-11|High average power solid-state laser system with phase front control
CA2278071C|2002-11-12|High average power fiber laser system with phase front control
US6872960B2|2005-03-29|Robust infrared countermeasure system and method
US6849841B2|2005-02-01|System and method for effecting high-power beam control with outgoing wavefront correction utilizing holographic sampling at primary mirror, phase conjugation, and adaptive optics in low power beam path
US7626152B2|2009-12-01|Beam director and control system for a high energy laser within a conformal window
US6809307B2|2004-10-26|System and method for effecting high-power beam control with adaptive optics in low power beam path
EP2726810B1|2017-08-23|Active retrodirective antenna array with a virtual beacon
US8731013B2|2014-05-20|Linear adaptive optics system in low power beam path and method
US4831333A|1989-05-16|Laser beam steering apparatus
Yu et al.2006|Coherent beam combining of large number of PM fibres in 2-D fibre array
US6480327B1|2002-11-12|High power laser system with fiber amplifiers and loop PCM
JP6545899B2|2019-07-17|Self-seeding high power laser
Schuetz et al.2013|Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion
US20040136051A1|2004-07-15|Self-adjusting interferometric outcoupler and method
Alemeh et al.1995|High capacity optical interconnects for phased array beamformers
Grasso et al.2005|Novel linear phase conjugation atmospheric turbulence compensation concept based upon real-time interactive media sampling holography for target-in-the-loop
Russo0|atmospheric turbulence compensation concept based upon real-time interacti...
同族专利:
公开号 | 公开日
EP0952642B1|2004-09-08|
CA2268228C|2002-02-12|
DE69919929D1|2004-10-14|
EP0952642A2|1999-10-27|
US6404784B2|2002-06-11|
CA2268228A1|1999-10-24|
DE69919929T2|2005-09-15|
EP0952642A3|2000-11-15|
JP3241690B2|2001-12-25|
JPH11340555A|1999-12-10|
US6219360B1|2001-04-17|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US6872960B2|2001-04-18|2005-03-29|Raytheon Company|Robust infrared countermeasure system and method|
US20100272137A1|2009-04-28|2010-10-28|Daniel Kopf|Laser amplifier system and laser amplifier method|
CN101877455A|2009-04-28|2010-11-03|高Q技术有限公司|Laser amplification device and laser amplification method|
DE112007000457B4|2006-02-24|2013-09-12|Northrop Grumman Systems Corporation |Coherent fiber beam combiner with optical diffraction element|
DE102013005607A1|2013-03-25|2014-09-25|Friedrich-Schiller-Universität Jena|Method and apparatus for optically pumping laser amplifiers for generating laser radiation with defined beam characteristics|
CN104169777A|2012-01-20|2014-11-26|三菱重工业株式会社|Multi-beam linking device|US3857636A|1973-10-03|1974-12-31|United Aircraft Corp|Measurement of phase profile across a high power laser beam|
US4005935A|1975-07-31|1977-02-01|Hughes Aircraft Company|Method and apparatus for providing a phase compensated optical beam|
US4145671A|1978-01-06|1979-03-20|University Of Southern California|Time-reversed replication of a wave front|
US4233571A|1978-09-27|1980-11-11|Hughes Aircraft Company|Laser having a nonlinear phase conjugating reflector|
US4321550A|1979-10-22|1982-03-23|Hughes Aircraft Company|Phase conjugate correction for high gain amplifier systems|
WO1981002952A1|1980-04-05|1981-10-15|Eltro Gmbh|Laser device|
US4399356A|1981-01-19|1983-08-16|Adaptive Optics Associates, Inc.|Optical wavefront sensing system|
US4500855A|1982-06-10|1985-02-19|University Of Southern California|Phase conjugation using internal reflection|
US4618217A|1985-01-08|1986-10-21|The United States Of America As Represented By The Secretary Of The Air Force|Electron-bombarded silicon spatial light modulator|
US4725138A|1985-05-22|1988-02-16|Adaptive Optics Associates Incorporated|Optical wavefront sensing system|
US4673257A|1985-06-19|1987-06-16|Avco Corporation|Method of and apparatus for correction of laser beam phase front aberrations|
US4737621A|1985-12-06|1988-04-12|Adaptive Optics Assoc., Inc.|Integrated adaptive optical wavefront sensing and compensating system|
US4812639A|1985-12-19|1989-03-14|Hughes Aircraft Company|Self-aligning phase conjugate laser|
US4734911A|1986-03-14|1988-03-29|Hughes Aircraft Company|Efficient phase conjugate laser|
US4869579A|1986-07-31|1989-09-26|Technion Research & Development Foundation|Optical apparatus and method for beam coupling useful in light beam steering and spatial light modulation|
US4794344A|1986-12-01|1988-12-27|Rockwell International Corporation|Injected phase conjugate laser amplifier|
US5113282A|1987-07-10|1992-05-12|Hughes Aircraft Company|Dual light valve system with selective decoupling of light valves|
US4769820A|1987-10-16|1988-09-06|Avco Research Laboratory, Inc.|Means for and method of improving transmission of a data carrying laser beam|
US4832447A|1987-12-04|1989-05-23|Board Of Trustees Operating Michigan State University|Joint transform image correlation using a nonlinear spatial light modulator at the fourier plane|
US4854677A|1987-12-21|1989-08-08|Hughes Aircraft Company|Interferometric/feedback spatial light modulation system and method|
JPH024235A|1988-06-23|1990-01-09|Hamamatsu Photonics Kk|Spatial light modulator|
US4921335A|1988-09-01|1990-05-01|The United States Of America As Represented By The Secretary Of The Navy|Optical phase conjugate beam modulator and method therefor|
US5060225A|1988-11-14|1991-10-22|Hughes Aircraft Company|Phase modulated optical carrier data link for a focal plane array|
US5040140A|1989-04-28|1991-08-13|The United States Of America As Represented By The Secretary Of The Air Force|Single SLM joint transform correaltors|
US5038359A|1989-10-10|1991-08-06|Hughes Aircraft Company|Self-pumped, optical phase conjugation method and apparatus using pseudo-conjugator to produce retroreflected seed beam|
US4996412A|1989-12-07|1991-02-26|United Technologies Corporation|Optical system for wavefront compensation|
US5164578A|1990-12-14|1992-11-17|United Technologies Corporation|Two-dimensional OCP wavefront sensor employing one-dimensional optical detection|
US5396364A|1992-10-30|1995-03-07|Hughes Aircraft Company|Continuously operated spatial light modulator apparatus and method for adaptive optics|
US5349432A|1992-12-11|1994-09-20|Hughes Aircraft Company|Multi-laser coherent imaging through aberrating media|
US5392308A|1993-01-07|1995-02-21|Sdl, Inc.|Semiconductor laser with integral spatial mode filter|
US5537432A|1993-01-07|1996-07-16|Sdl, Inc.|Wavelength-stabilized, high power semiconductor laser|
US5535049A|1994-05-11|1996-07-09|The Regents Of The University Of California|Phase and birefringence aberration correction|
EP0686934B1|1994-05-17|2001-09-26|Texas Instruments Incorporated|Display device with pointer position detection|
US5694408A|1995-06-07|1997-12-02|Mcdonnell Douglas Corporation|Fiber optic laser system and associated lasing method|
US5629765A|1995-12-15|1997-05-13|Adaptive Optics Associates, Inc.|Wavefront measuring system with integral geometric reference |
US6219360B1|1998-04-24|2001-04-17|Trw Inc.|High average power solid-state laser system with phase front control|US6549551B2|1999-09-27|2003-04-15|Cymer, Inc.|Injection seeded laser with precise timing control|
US6556600B2|1999-09-27|2003-04-29|Cymer, Inc.|Injection seeded F2 laser with centerline wavelength control|
US6219360B1|1998-04-24|2001-04-17|Trw Inc.|High average power solid-state laser system with phase front control|
US20040134894A1|1999-12-28|2004-07-15|Bo Gu|Laser-based system for memory link processing with picosecond lasers|
US7369773B2|2000-05-24|2008-05-06|Purdue Research Foundation|Methods and systems for polarization control and polarization mode dispersion compensation for wideband optical signals|
US7217941B2|2003-04-08|2007-05-15|Cymer, Inc.|Systems and methods for deflecting plasma-generated ions to prevent the ions from reaching an internal component of an EUV light source|
US6480327B1|2000-09-11|2002-11-12|Hrl Laboratories, Llc|High power laser system with fiber amplifiers and loop PCM|
US6570704B2|2001-03-14|2003-05-27|Northrop Grumman Corporation|High average power chirped pulse fiber amplifier array|
US6809307B2|2001-09-28|2004-10-26|Raytheon Company|System and method for effecting high-power beam control with adaptive optics in low power beam path|
US6782016B2|2001-11-30|2004-08-24|Ut-Battelle, L.L.C.|Master laser injection of broad area lasers|
US6674519B2|2001-12-21|2004-01-06|Northrop Grumman Corporation|Optical phase front measurement unit|
US6678288B2|2002-06-10|2004-01-13|The Boeing Company|Multi-aperture fiber laser system|
US6961171B2|2002-10-17|2005-11-01|Raytheon Company|Phase conjugate relay mirror apparatus for high energy laser system and method|
US7196342B2|2004-03-10|2007-03-27|Cymer, Inc.|Systems and methods for reducing the influence of plasma-generated debris on the internal components of an EUV light source|
US7465946B2|2004-03-10|2008-12-16|Cymer, Inc.|Alternative fuels for EUV light source|
US20050078714A1|2003-10-08|2005-04-14|Hiroshi Komine|High power fiber laser with eye safe wavelengths|
US7355191B2|2004-11-01|2008-04-08|Cymer, Inc.|Systems and methods for cleaning a chamber window of an EUV light source|
US7180083B2|2005-06-27|2007-02-20|Cymer, Inc.|EUV light source collector erosion mitigation|
US7598509B2|2004-11-01|2009-10-06|Cymer, Inc.|Laser produced plasma EUV light source|
US7088743B2|2004-03-15|2006-08-08|Northrop Grumman Corp.|Laser source comprising amplifier and adaptive wavefront/polarization driver|
JP4525140B2|2004-03-31|2010-08-18|三菱電機株式会社|Coherent optical coupling device|
US7123634B2|2004-05-07|2006-10-17|Northrop Grumman Corporation|Zig-zag laser amplifier with polarization controlled reflectors|
US7768699B2|2004-08-20|2010-08-03|Mitsubishi Electric Corporation|Laser phase difference detecting device and laser phase control device|
EP1793460A1|2004-09-13|2007-06-06|Mitsubishi Denki Kabushiki Kaisha|Laser beam path length difference detector, laser phase controller and coherent optical coupler|
US7280571B2|2004-11-23|2007-10-09|Northrop Grumman Corporation|Scalable zig-zag laser amplifier|
US7378673B2|2005-02-25|2008-05-27|Cymer, Inc.|Source material dispenser for EUV light source|
US7482609B2|2005-02-28|2009-01-27|Cymer, Inc.|LPP EUV light source drive laser system|
US7365349B2|2005-06-27|2008-04-29|Cymer, Inc.|EUV light source collector lifetime improvements|
US7439530B2|2005-06-29|2008-10-21|Cymer, Inc.|LPP EUV light source drive laser system|
US7372056B2|2005-06-29|2008-05-13|Cymer, Inc.|LPP EUV plasma source material target delivery system|
US7394083B2|2005-07-08|2008-07-01|Cymer, Inc.|Systems and methods for EUV light source metrology|
KR100784838B1|2006-03-08|2007-12-14|한국과학기술원|Light amplifier using apparatus for phase stabilization of the stimulated brillouin scattering phase conjugate mirror|
US7477108B2|2006-07-14|2009-01-13|Micro Mobio, Inc.|Thermally distributed integrated power amplifier module|
US7502395B2|2006-08-08|2009-03-10|Northrop Grumman Space & Mission Systems Corp.|Pulsed coherent fiber array and method|
US8731013B2|2007-01-24|2014-05-20|Raytheon Company|Linear adaptive optics system in low power beam path and method|
JP5234569B2|2007-04-05|2013-07-10|川崎重工業株式会社|Laser multi-point ignition device|
US7884997B2|2007-11-27|2011-02-08|Northrop Grumman Systems Corporation|System and method for coherent beam combination|
US7952691B2|2009-05-08|2011-05-31|Raytheon Company|Method and system of aligning a track beam and a high energy laser beam|
US8203109B2|2009-05-08|2012-06-19|Raytheon Company|High energy laser beam director system and method|
US8228599B1|2009-12-10|2012-07-24|The Boeing Company|Coherent beam combining using real time holography|
IL206143A|2010-06-02|2016-06-30|Eyal Shekel|Coherent optical amplifier|
JP2011254028A|2010-06-04|2011-12-15|Mitsubishi Electric Corp|Phased array laser apparatus|
JP5478377B2|2010-06-16|2014-04-23|三菱電機株式会社|High power laser equipment|
DE102010048294B4|2010-10-14|2021-02-18|Deutsch-Französisches Forschungsinstitut Saint-Louis|Laser arrangement with a phase front control|
JP5665640B2|2010-11-10|2015-02-04|三菱電機株式会社|Optical frequency control device|
US8786942B2|2012-06-13|2014-07-22|Northrop Grumman Systems Corporation|Coherently phase combined, high contrast, pulsed optical fiber amplifier array|
FR2993718B1|2012-07-20|2014-07-11|Thales Sa|POWER LASER WITH SELF-ADAPTIVE DEVICE FOR FITTING OPTICAL FIBER AMPLIFIERS|
FR2993717B1|2012-07-20|2014-07-18|Thales Sa|POWER LASER WITH SELF-ADAPTIVE DEVICE FOR FITTING OPTICAL FIBER AMPLIFIERS|
JP5501435B2|2012-12-27|2014-05-21|川崎重工業株式会社|Laser multi-point ignition device|
US9303958B2|2013-12-23|2016-04-05|Advanced Laser Technologies, LLC|Laser-weapon module for a portable laser weapon|
KR101599147B1|2014-09-19|2016-03-04|한국과학기술원|Apparatus and method for common-channel digital optical phase conjugation|
US10008822B2|2014-10-10|2018-06-26|The Boeing Company|Laser system and method for controlling the wave front of a laser beam|
RU2582300C1|2015-01-16|2016-04-20|Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"|Method for coherent laser radiation in multichannel continuous lasers|
US9601904B1|2015-12-07|2017-03-21|Raytheon Company|Laser diode driver with variable input voltage and variable diode string voltage|
US10411435B2|2016-06-06|2019-09-10|Raytheon Company|Dual-axis adaptive opticsystem for high-power lasers|
法律状态:
2002-05-24| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2003-02-12| AS| Assignment|Owner name: NORTHROP GRUMMAN CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRW, INC. N/K/A NORTHROP GRUMMAN SPACE AND MISSION SYSTEMS CORPORATION, AN OHIO CORPORATION;REEL/FRAME:013751/0849 Effective date: 20030122 Owner name: NORTHROP GRUMMAN CORPORATION,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRW, INC. N/K/A NORTHROP GRUMMAN SPACE AND MISSION SYSTEMS CORPORATION, AN OHIO CORPORATION;REEL/FRAME:013751/0849 Effective date: 20030122 |
2005-12-12| FPAY| Fee payment|Year of fee payment: 4 |
2009-11-30| AS| Assignment|Owner name: NORTHROP GRUMMAN SPACE & MISSION SYSTEMS CORP.,CAL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN CORPORTION;REEL/FRAME:023699/0551 Effective date: 20091125 Owner name: NORTHROP GRUMMAN SPACE & MISSION SYSTEMS CORP., CA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN CORPORTION;REEL/FRAME:023699/0551 Effective date: 20091125 |
2009-12-04| FPAY| Fee payment|Year of fee payment: 8 |
2010-02-10| AS| Assignment|Owner name: NORTHROP GRUMMAN SYSTEMS CORPORATION,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN SPACE & MISSION SYSTEMS CORP.;REEL/FRAME:023915/0446 Effective date: 20091210 Owner name: NORTHROP GRUMMAN SYSTEMS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN SPACE & MISSION SYSTEMS CORP.;REEL/FRAME:023915/0446 Effective date: 20091210 |
2013-12-05| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US09/066,063|US6219360B1|1998-04-24|1998-04-24|High average power solid-state laser system with phase front control|
US09/758,050|US6404784B2|1998-04-24|2001-01-10|High average power solid-state laser system with phase front control|US09/758,050| US6404784B2|1998-04-24|2001-01-10|High average power solid-state laser system with phase front control|
[返回顶部]